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TECHNICAL SUMMARY 

NEXTRANS Project No. 031OY02 Final Report, December 18, 2011 

Incorporating Image-Based Traffic Information for AADT Estimation: Operational Developments for 

Agency Implementation and Theoretical Extensions to Classified AADT Estimation 

Introduction 

Average annual daily traffic (AADT) is perhaps the most fundamental measure of traffic flow.  The data 

used to produce AADT estimates are typically collected by in-highway traffic counters operated by state 

Department of Transportation (DOT) traffic monitoring crews who must cover thousands of highway 

segments in their statewide systems on a continual basis. In-highway traffic counters can be dangerous 

to traffic crews and disruptive to traffic.  In addition, the availability of limited resources, coupled with 

the large number of highway segments spread across the expansive geographic regions of the state, 

requires that the state DOTs can only collect short-term, sample volumes for the majority of the 

highway segments.  Moreover, not all segments can be sampled every year, and some traffic counts will 

have been collected several years before the AADT of the segment is estimated. 

In a first year project, results of empirical studies demonstrated more accurate AADT estimation when 

using a proposed method to combine older, traditionally collected traffic count data with traffic 

information contained in more recently obtained air photos. Software components were also 

developed to allow many of the calculations to be performed automatically. Additional empirical 

studies were conducted this year, a refinement to the estimation of an important input value using 

image-based traffic information was developed, and proof-of-concept software was installed and used 

at the Ohio Department of Transportation. 

Findings 

An empirical study using images and ground-based data collected by the Ohio Department of 

Transportation (ODOT) demonstrated the stability of a previously assumed parameter used when 

combining image-based information and traditional ground-based traffic counts to estimate AADT. 

Using twelve ODOT images of highway segments equipped with Automatic Traffic Recorders (ATRs), the 

standard deviation of the ratio of the estimated AADT produced from image-based information to an 

estimate of the true AADT produced from ATR data was calculated. The calculated standard deviation 

was almost identical to the value produced in a previously conducted study using different images. 

The refinement of the standard deviation estimate proposed in this study is based on information 

available in the image.  An empirical study showed that AADT estimates produced using “image-based” 
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estimates of the standard deviation parameter were better than AADT estimates produced when using 

the default value of this parameter. The improvement was slight, but greater improvements may be 

exhibited when using images of segments with conditions that differ more substantially from those 

corresponding to the imaged segments used in this empirical study, which produced an estimated 

standard deviation value that is very close to the default value. 

Extensive help from ODOT personnel was required to allow installation of previously developed 

software modules on the ODOT computer system.  However, this appears to require only a “one-time 

investment,” and should not be a problem for operational use of an image-based approach to AADT 

estimation if state DOTs committed to implementation of the software.  Use of the installed software 

system highlighted that it would be difficult to use if images were not georeferenced, and the image-

based approach to AADT estimation might only be cost effective if a DOT collects georeferenced images 

on a regular basis.  In addition, many images in the ODOT database were actually mosaics of multiple 

overlapping images taken at different times.  If the proposed AADT estimation approach is to be 

pursued in the future, it would be important to have access to the original images, and not only mosaics 

of multiple images. Different approaches could be developed and investigated to address correlation 

when the images are taken within only a few seconds of each other. 

Recommendations 

The empirical findings continue to indicate that AADT estimates can be improved by incorporating 

image-based information using the methodology proposed in this research.   The installation and use of 

proof-of-concept software at the Ohio Department of Transportation indicates the feasibility of 

developing a software system for operational use if georeferenceced images are collected by state DOTs 

and if original images, and not only mosaics of images, are accessible.  To motivate further progress 

toward implementation, additional trial use at multiple state Departments of Transportation is 

recommended.  Such studies would identify operational issues for sustained and efficient use. Further 

empirical studies of the performance of the proposed method for refining the standard-deviation 

parameter estimate using image-based traffic information are also recommended. 

Contacts 

For more information: 

Mark R. McCord NEXTRANS Center 
Principal Investigator Purdue University - Discovery Park 
Deptt of Civil & Environ. Engineering and Geodetic Science 2700 Kent B-100 
The Ohio State University West Lafayette, IN 47906 
mccord.2@osu.edu 

nextrans@purdue.edu 
Prem Goel (765) 496-9729 
Co-Principal Investigator (765) 807-3123 Fax 
Department of Statistics 
The Ohio State University www.purdue.edu/dp/nextrans 
goel.1@osu.edu 
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INTRODUCTION 

Average annual daily traffic (AADT) is perhaps the most fundamental measure of traffic flow.  The data 

used to produce AADT estimates are typically collected by in-highway traffic counters operated by state 

Department of Transportation (DOT) traffic monitoring crews who must cover thousands of highway 

segments in their statewide systems on a continual basis. In-highway traffic counters can be dangerous 

to traffic crews and disruptive to traffic.  In addition, the availability of limited resources, coupled with 

the large number of highway segments spread across the expansive geographic regions of the state, 

requires that the state DOTs can only collect short-term, sample volumes for the majority of the 

highway segments.  Moreover, not all segments can be sampled every year, and some traffic counts will 

have been collected several years before the AADT of the segment is estimated. 

We previously developed a method to combine the older, traditionally collected traffic data with traffic 

information contained in more recently obtained air photos in a statistically supported manner designed 

to produce more accurate estimates of AADT.  The appeal of this result is that state DOTs image 

highways for purposes unrelated to traffic flow analysis and can also easily obtain images of specific 

highway segments when flying to or from a data collection mission scheduled for other purposes.  As 

such, the marginal cost of obtaining the image information is very low. If a method of combining image-

based traffic information with traditionally collected traffic data to improve AADT estimation is 

implemented, data collection procedures could be adjusted so that the number of costly and dangerous 

traffic counts is reduced while improving accuracy in estimating AADT.  To take advantage of this 

promising method in practice, it is necessary to demonstrate its potential for better estimation accuracy 

and to develop an efficient way to use the method on a widespread, repeated basis in an operational 

setting. 

In a first year project, we conducted empirical studies that demonstrated the advantage of the proposed 

method, developed software components to conduct many of the calculations automatically, and 

motivated traffic monitoring personnel at the Ohio Department of Transportation (ODOT) to allow us to 

develop software at ODOT as step toward developing an operational system. In the second year effort 

reported here, we continued to investigate the quality of AADT estimation using imagery by conducting 

additional empirical studies, developed a refinement of the estimate of an important input value based 

on information available in the image, and installed proof-of-concept software at the Ohio Department 

of Transportation. 

PROBLEM 

The overall problem to be addressed is that of working toward the development, implementation, and 

use of a system and a process in which aerial imagery, primarily collected for non-traffic monitoring 

purposes by state DOTs, is used to improve AADT estimates. 
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APPROACH 

Our efforts in the year 2 effort were devoted to two major thrusts – empirical investigations and 

software implementation. 

Thrust 1 - Empirical investigations of AADT estimation performance: This thrust consisted of two 

components: (1) an investigation of the assumed value of an important input variable used in our AADT 

estimation method; (2) an investigation of AADT estimation performance when refining this input value 

using information available in the imagery. 

Thrust 2 - Implementation of software: In this thrust we worked with personnel at the Ohio Department 

of Transportation (ODOT) to implement software on the ODOT system and use it to estimate AADT from 

an ODOT image in a manner that would emulate operational use. 

METHODOLOGY 

Incorporating Image-based Information in AADT Estimation 

Details of the traditional approach to estimating AADT and the approach we have developed that 

combines information in air photos with traditionally collected ground counts to provide an improved 

AADT estimate can be found in McCord and Goel (2009). To summarize, in the traditional approach 

AADT in year y on highway segment s is estimated as the average of a set of 24-hour traffic volumes 

produced from “coverage counts” (traffic counts that are scheduled in a DOT traffic data collection 

program so as to “cover” the highway network on a multiyear basis) that are “deseaonalized” by factors 

that account for the temporal variability in traffic attributable to the day-of-week and the month-of-year 

on which the coverage counts were taken. We denote this traditional estimate as AADTC
s(γ), where the 

superscript C represents that the estimate is produced from coverage counts.  

Because of limitations in the supply of equipment and personnel, coverage counts cannot be obtained 

on all segments every year. To estimate AADT in some year y’ after the year y in which the coverage 

counts were obtained, it is typical to multiply AADTC
s(γ) by a growth factor GFs(γ, γ’) that accounts for 

the estimated growth in traffic between year y and year y’. This growth factor is generally estimated 

from traffic data produced by Automatic Traffic Recorders (ATRs) on a set of segments where traffic 

patterns are believed to be similar to those of the segment s for which the AADT is being estimated.  

(ATRs are permanently installed traffic recorders designed to collect traffic 24 hours per day, 365 days 

per year on a small subset of highway segment.) We denote this resulting estimate as AADTCG
s(γ’, γ), 

where  the superscript CG indicates that both coverage counts and a growth factor are used in the 

estimation. 
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The approach we have developed to integrate the more contemporary information available in an image 

of segment s taken in hour-of-the-day h on day-of-the-week d in month-of-the-year m in year y’ first 

produces an “image-based” AADT calculated as: 

AADTs
I(γ’; h,d,m)= Nveh/L x U x 24 xFH

s(h,d) x FMD
s(m,d) (1) 

where Nvehis the number of vehicles in the image on segment s, L is the length of the segment 

considered in the image, U is the average speed on the segment (which could depend on the traffic 

density of the segment), Fh
s(h, d) is a factor used to convert an hourly traffic volume occurring during 

hour h and day-of-week d on segment s to an average hourly volume for the day, and FMD
s(m,d) is the 

seasonal factor used to convert a 24-hour traffic volume occurring on day-of-week d and month-of-year 

m to an estimate of an average volume for the year. 

In the proposed approach, the two estimates, AADTCG
s(γ’, γ) and AADTs

I(γ), of AADT in year y’ are 

combined using a weighted average to produce the proposed improved estimate of AADT in year y’: 

AADTCGI 
s(γ’, γ) =  w x AADTI

x(γ’) + (1-w) x AADTCG
s (γ’, γ). (2) 

The superscript CGI indicates that the estimate incorporates the coverage counts (C), the growth factor 

(G), and the image (I). The weight w used in Equation (2) is derived from: 

)2 )2 w = *(σC + (σG)2+ / *(σC + (σG)2+ (σI)2] (3) 

where (σC)2 is the variance of the ratio the coverage count-based AADT estimate in year γ (the year in 

which the coverage counts were obtained) to the true AADT in year γ, (σG)2 is the variance of the ratio of 

the estimated growth factor for segment s between years γ and γ’ to the true growth factor for the 

segment, and (σI)2 is the variance of the ratio of the image-based AADT estimate in year γ’ (the year in 

which the image was obtained) to the true AADT in year γ’.  As explained in McCord and Goel (2009) and 

Jiang et al. (2006), (σC)2 and (σG)2 can be estimated from available ATR data, and a default value of (σI)2 

determined from empirical studies can be used in Equation (3) to determine the value of w. 

Further Empirical Investigations of Estimation Performance 

In Jiang et al., (2006), the AADTCGI 
s(γ’, γ) estimate is argued to be conceptually more accurate than the 

traditional  estimate AADTCG
s(γ’, γ) and shown to perform better in a simulation study.  In our first year 

study (McCord and Goel, 2009), we used 12 images of 6 highway segments collected by the Ohio 

Department of Transportation (ODOT) Aerial Engineering section, the corresponding traffic counts 

obtained by the ODOT Traffic Monitoring section, and the prototype software we developed to 

demonstrate the improved performance of AADTCGI 
s(γ’, γ) in an empirical  study. 

In both the simulation and empirical studies, a default value of σI (the standard deviation corresponding 

to the variance (σI)2) was used in Equation (3) to determine the weight of w of the image-based estimate 

(relative to the traditional AADT estimate) that is used in Equation (2) to produce AADTCGI . The default 
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value of σI was based on empirical comparisons between AADTI produced from Equation (1) and 

corresponding AADT values either published by the state DOT or determined from ATR data (McCord, et 

al., 2003). Using 22 comparisons, an estimated value of 0.17 was produced. In the study reported here, 

we used the twelve ODOT images, none of which was used in the McCord, et al. (2003) study, and 

corresponding traffic monitoring data to investigate this default estimate of σI .  In addition, we 

conducted an empirical study in which we used a refined estimate of σI based on information that can 

be obtained in the image. We explain the methodology of each of these studies next. 

Default σI Value 

We used the same twelve images used in our year 1 study to investigate the reliability of the previously 

proposed default value of σI . All the images were obtained by ODOT Aerial Engineering in 2005 and 

each image contained one highway segment on which an ODOT ATR was located. We used Equation (1) 

to calculate AADTI in 2005 for each of the ATR-equipped segments in the images and used the 2005 

ODOT ATR data with the AASHTO method (AASHTO, 1992) to produce estimates of the true AADTs in 

2005 for the segments.  (We call these “estimates” of the true AADT, since there are errors or missing 

data in the ATR dataset.) We then formed the ratio of each of the twelve estimated AADTI s (one for 

each image-ATR equipped segment pair) to the true AADT for the segment and calculated the standard 

deviation of the set of ratios. We note that the images consisted of sets of two images on six different 

roadway segments equipped with ATRs. The two images for a given segment were taken only a few 

seconds apart and contained many of the same vehicles. As such, the twelve ratios of AADTI to the 

corresponding true AADT cannot be considered independent. Nevertheless, the standard deviation 

would still be meaningful, especially given the sometimes very different values of AADTI that were 

obtained from the two images of the same segment. 

AADT Estimation Using Image-based Estimate of σI 

Image-based estimate of σI: The underlying concept in estimating the AADT for a segment from an 

image of the segment, as given in Equation (1), is to first obtain the traffic density on the segment from 

the image and determine an average hourly flow rate from the density and an assumed average speed 

using the fundamental relation of macroscopic traffic flow (see, e.g., Mannering et al., 2009), namely, 

that flow rate equals density times speed. The flow rate, which can be used to produce an estimate of 

the hourly volume, is converted to an estimate of the 24-hour volume for the day by multiplying by 24 

hours and the hourly factor.  The estimate of the 24-hour volume is then converted to an estimate of 

AADT by using the traditional seasonal factors that account for the day-of-week and month-of-year 

when the traffic data were imaged. In this way, the error in estimate AADTI can be considered to be 

comprised of an error in converting the observed density to an estimate of the hourly volume, an error 

in converting the hourly volume to an estimate of the 24-hour volume, and in error in converting the 24-

hour volume to an estimate of the annual average daily volume.  

According to the arguments in the Appendix, the variance (σI)2 of the ratio of AADTI to the true AADT 

used in Equation (3), can be approximated as 
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(σI)2
 D

2+H
2+T

2, (4) 

where D
2 is the variance of the ratio of the estimated AADT, conditional on knowing the true 24-hour 

volume for a day, to the true AADT; H
2 is the variance of the ratio of the estimated 24-hour volume for 

a given day, conditional on knowing the true volume in a given hour on the day, to the true 24-hour 

volume for the day; and T
2 is the variance of the ratio of the estimated volume in a specified hour, 

conditional on knowing the true volume in a sub-interval of the hour of specified duration, to the true 

volume in the given hour.   

Estimates of D
2 and H

2 can be developed by determining sample variances of the corresponding ratios 

using data from ATRs believed to behave similarly, in terms of temporal variability, to the segment s for 

which the AADT is to be estimated.  More specifically, to estimate D
2, a daily (24-hour) ATR volume 

would be converted to an estimate of an annual average by using seasonal factors, as is traditionally 

done.  The estimate of the annual average would then be divided by the “true” AADT (determined from 

the ATR data) to form an empirical ratio.  Repeating for all relevant days (e.g., all days, or all weekdays, 

or all Tuesdays, Wednesdays, and Thursdays) would form a set of empirical ratios.  The variance of this 

set of empirical ratios can be used to approximate D
2 . 

Similarly, to estimateH
2, an hourly volume available from the ATR data can be converted to a 24-hour 

volume estimate by multiplying by 24 and using the hourly factor corresponding to the hour. The 24-

hour volume on that day is also available from the ATR data. (The 24-hour volume is the sum of the 

twenty-four hourly volumes on that day.) The ratio of the estimated 24-hour volume to the true 24-

hour volume can then be formed. Repeating for different hours, different days, and different hours 

would form a set of ratios, and the sample variance of the set of ratio can be used to approximate H
2
 

To estimate T
2 we consider that the vehicles in the image can be converted to a sub-hourly volume or 

traffic count of duration tdur . The “equivalent count duration,” which is typically on the order of a 

minute to a few minutes (i.e., a few hundredths of an hour) can be obtained from the assumed average 

vehicle speed and the length of the segment in the image (see, Jiang et al., 2006; McCord et al., 2003). 

Conditional on knowing the hourly volume VH, we assume that the number of vehicles that would 

“appear” in the subhourly period of duration tdur is binomially distributed, with the hourly volume VH 

dur dur dur durand the proportion of the hour t (= t [hrs] / 1 [hr], assuming t is in units of hours) covered by t

representing the number of “trials” and the “probability of success,” respectively. In the Appendix, we 

show that the variance T 
of the ratio of the hourly volume – estimated from the number of vehicles 

Nveh in the image, the length L of the segment in the image, and the average speed U of the vehicles on 

the segment – to the true hourly volume can be approximated as: 

T 
= (1-L/U)/Nveh . (5) 

As would be expected, Equation (5) shows that the variance T 
of the estimated hourly volume is 

reduced as the length L of the segment in the image increases (which leads to a longer “equivalent 

count interval duration,” everything else being equal) and as the number of vehicles Nveh in the image 

increases (which is consistent with a larger number of observations, everything else being equal). 
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In summary, the number of vehicles in the image and the length of the segment in the image can be 

used to determine an estimate of T 
, and ATR data can be used to determine estimates of D 

and H
2 . 

These estimates can be summed (see Equation  (4)) to produce an “image-based” estimate of (I)  . This 

image-based estimate can then be combined according to Equation (3) with the estimates of (σC)2 and 

(σG)2 to produce a value of w that weights the imaged-based  and traditional AADT estimates according 

to Equation (2). 

Design of empirical study: We conducted an empirical study of the ability of the image-based estimate of 

(I)2 to improve the AADT estimate AADTCGI, compared to using a default value of (I)2 . In our empirical 

study, we used the same twelve images used in our year 1 study, estimated AADTCGI on the segment s in 

the image upon which an ATR was located using a weight w in Equation (2) derived from the image-

based value of (I) and the default value of (I)  and compared the results to the estimate of the true 

AADT on segment s obtained from the ATR data. As mentioned above, the twelve images, all of which 

were obtained in 2005, were comprised of pairs of two images taken a few seconds apart of six different 

ATR-equipped segments. In this way, there were six segments investigated in the study, with two 

images for each segment.  

As in the first year study (McCord, et al., 2009), we used ATR data on segment s to determine AADTCGI 

values based on coverage counts (generated from ATR data) on segment s from 2003 and 2004.  The 

same general approach used in our first year study was used to produce the true 2005 AADT values, 

which we denote AADTtrue , and the AADTCGI values using the default I = 0.20 (rounded from 0.17) based 

on generated coverage counts from 2003 and 2004.  We denote the estimate based on this default 

value AADTCGI(def) . The value of AADTCGI determined using the image-based estimate of I, which we 

denote AADTCGI(img) , differed from AADTCGI(def) only in that the value of I was determined from equation 

(5) using information from the image, rather than a default value of 0.20. We note that estimated 

AADT values produced in this report differ slightly from those produced in the year one report. Different 

individuals produced the estimates in the two years.  Image-based AADT would depend on the length L 

of the segment in the image, and different individuals would delimit this length differently. 

Furthermore, the different individuals would have processed the ATR data slightly differently when 

determining which data to include and which to exclude when producing the various AADT estimates – 
estimates of the “true” AADT values, growth factors, σC, and σG. In addition, for one segment, we 

considered two directional AADT this year, but considered only one directional AADT in the year one 

project.  However, when we repeated the year-one comparisons with the values produced this year,  we 

again saw that the AADT estimates AADTCGI that incorporated image information outperformed the 

estimates that did not incorporate image information. (Specifically, AADTCGI outperformed AADTCG and a 

second estimate called AADTc that was investigated in the year-one study.) 

Implementation of Estimation Software at Ohio Department of Transportation 

We worked with section leaders in Traffic Monitoring and Geographic Information Systems (GIS) 

sections at the Ohio Department of Transportation (ODOT) to connect the software modules developed 
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in the year one effort and install the connected modules on the ODOT computer system. We then 

applied the software to an air photo obtained from the ODOT Aerial Engineering section. 

FINDINGS 

Empirical Study of Default σI Value 

In Table 1, we list the image number, the ODOT number for the ATR-equipped segment in the image, 

the functional class (FC) of the segment, the year in which the image was obtained (which was 2005 for 

all segments, and the same year for which the AADT was calculated), the length L of the image in miles 

that appeared in the image, the number of vehicles Nveh in the image, the assumed vehicle speed U at 

the time the image was taken, the image-based AADT estimate AADTI produced from Equation (1), the 

estimate AADTtrue of the true AADT produced from the ATR data, and the ratio of the image-based to 

true AADT estimates. As seen at the bottom of the table, the mean of the AADTI values is approximately 

1 (0.9675). Of interest for this study, the standard deviation is 0.17518.  This sample standard deviation 

is amazingly close to the value of 0.17 produced in McCord, et al. (2003) and which formed the basis for 

the default value used in previous empirical studies. We note again that none of the twelve images used 

in this study had been used in the McCord, et al. (2003)  empirical study. 

Table 1. Ratio of Image-based Estimate AADTI to True AADT for Twelve Images of Empirical Study 

Image # ATR # FC Image Yr L [mi] Nimg
 U [mph] AADTI AADTtrue AADTI/AADTtrue

11273-1-1 767 12 2005 0.698 11 70 20615 31926 0.646

11273-1-2 767 12 2005 0.713 18 70 33004 31926 1.034

11273-2-3 707 1 2005 0.655 15 75 32896 30424 1.081

11273-2-4 707 1 2005 0.657 15 75 32781 30424 1.077

11273-4-5 601 11 2005 0.686 34 70 65090 94867 0.686

11273-4-6 601 11 2005 0.705 59 70 109850 94867 1.158

11273-5-7 752 11 2005 0.685 49 70 93903 94301 0.996

11273-5-8 752 11 2005 0.707 46 70 85377 94301 0.905

11273-3-9 121 11 2005 0.655 64 70 128170 123992 1.034

11273-3-10 121 11 2005 0.663 64 70 126810 123992 1.023

11273-6-11 140 11 2005 0.683 36 70 69235 58712 1.179

11273-6-12 140 11 2005 0.681 24 70 46263 58712 0.788

Average                0.967                           

St Dev                    0.175

The closeness of the σI estimate produced in this empirical study to the value produced in a previous 

study using a completely different set of images, segments, and years of AADT estimation is striking and 

supports the promise of using this estimation approach with the use of a default value. 
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Empirical Results of AADT Estimation Using Image-based Estimate of σI 

To compare the performance of the AADT estimate AADTCGI(img)using an image-derived estimate of I to 

the performance of the AADT estimate AADTCGI(def) using the default value I= 0.20, we considered the 

three measures of performance used in our first year study.  Specifically, we formed 

 the mean absolute relative error MARE between the AADTCGI(img) estimates and the true AADT 

and between the AADTCGI(def) estimates and the true AADT. (Lower MARE is better.) 

 the proportions Prop(ARE<0.10) of AADTCGI(img)estimates and of AADTCGI(def) estimates within 10% 

(a commonly used target) of the true AADT. (Higher proportion is better.) 

< ARE CGI(img)) that AADTCGI(img) 
 the proportion of times Prop(ARE CGI(img) was closer than 

AADTCGI(def)to the true AADT. (A proportion greater than 0.5 indicates that AADTCGI(img) 

outperformed AADTCGI(def) more often than AADTCGI(def) outperformed  AADTCGI(img) .) 

As in our first year study, we produced estimates of the 2005 AADT using 24-hour volumes obtained 

from ATRs in 2004 and in 2003 to emulate coverage count data obtained in those years. 

The results are presented in Table 2. In addition to presenting the MARE, Prop(ARE<0.10), and Prop(ARE 
CGI(img) < ARE CGI(img)) values, we also  indicate which estimate performed better according to the indicated 

measure for the specific image.  An entry of zero for each estimate indicates that the two estimates 

performed identically on the measure. The sums, across the images and the years, of the number of 

times each estimate outperformed the other are presented at the bottom of the table.  

The results show that AADTCGI(img) outperformed AADTCGI(def) more often than the contrary for all three 

measures of performance.  The sample size was small (indeed, it is difficult to obtain the data that allow 

the type of empirical study we have designed and conducted), and AADTCGI(img) outperformed 

AADTCGI(def)only slightly more often than the contrary.  Therefore, additional studies would be needed 

before concluding that Equation (5) should be used to incorporate image-based information in the 

estimation of σI .  Nevertheless, the empirical study of the default value of σI presented above showed 

that the default value was a very good estimate for this set of images.  It is possible that the image-

based estimate of σI would show a greater improvement for a more diverse set of images.  Therefore, 

the results are supportive of the potential of using information in the image, either through Equation (5) 

or by some other means, to improve the weight placed on the image-based estimate of AADT relative to 

the traditional estimate when producing a combined AADT estimate 
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Table 2. Summary Measures of Performance for Image-based AADT Estimates using Image-based 

(AADTCGI(img) (AADTCGI(def)Information to Estimate I ) and Default Value of I ), by Image 

AADTCGI(img) AADTCGI(def) AADTCGI(img) AADTCGI(def) AADTCGI(img) AADTCGI(def) AADTCGI(img) AADTCGI(def) AADTCGI(img) AADTCGI(def)

11273-1-1 767 0.0297 0.0355 1 0 0.970 0.970 0 0 0.720 1 0

11273-1-2 767 0.0286 0.0277 0 1 0.980 0.980 0 0 0.450 0 1

11273-2-3 707 0.0632 0.0629 0 1 0.854 0.854 0 0 0.521 1 0

11273-2-4 707 0.0631 0.0626 0 1 0.854 0.854 0 0 0.469 0 1

11273-4-5 601 0.0523 0.0489 0 1 0.907 0.907 0 0 0.070 0 1

11273-4-6 601 0.0863 0.0848 0 1 0.698 0.698 0 0 0.035 0 1

11273-5-7 752 0.0540 0.0542 1 0 0.891 0.891 0 0 0.970 1 0

11273-5-8 752 0.0481 0.0482 1 0 0.911 0.911 0 0 0.901 1 0

11273-3-9 121 0.0287 0.0289 1 0 0.979 0.979 0 0 0.474 0 1

11273-3-10 121 0.0283 0.0286 1 0 0.989 0.979 1 0 0.611 1 0

11273-6-11 140 0.0409 0.0399 0 1 0.951 0.961 0 1 0.363 0 1

11273-6-12 140 0.0537 0.0562 1 0 0.902 0.902 0 0 0.824 1 0

11273-1-1 767 0.0459 0.0567 1 0 0.931 0.908 1 0 0.839 1 0

11273-1-2 767 0.0385 0.0363 0 1 0.943 0.943 0 0 0.241 0 1

11273-2-3 707 0.0518 0.0518 1 0 0.951 0.951 0 0 0.646 1 0

11273-2-4 707 0.0517 0.0516 0 1 0.951 0.951 0 0 0.598 1 0

11273-4-5 601 0.0943 0.0892 0 1 0.692 0.769 0 1 0.000 0 1

11273-4-6 601 0.1359 0.1346 0 1 0.077 0.077 0 0 0.000 0 1

11273-5-7 752 0.0529 0.0530 1 0 0.907 0.907 0 0 0.860 1 0

11273-5-8 752 0.0457 0.0457 1 0 0.907 0.907 0 0 0.977 1 0

11273-3-9 121 0.0427 0.0436 1 0 1.000 1.000 0 0 0.800 1 0

11273-3-10 121 0.0431 0.0439 1 0 1.000 1.000 0 0 0.800 1 0

11273-6-11 140 0.0545 0.0527 0 1 0.939 0.939 0 0 0.204 0 1

11273-6-12 140 0.0741 0.0768 1 0 0.684 0.653 1 0 0.888 1 0

Sum 13 11 Sum 3 2 Sum 14 10
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Prop(ARECGI(img)                                

<ARECGI(def))
Image name ATR#

MARE Better MARE Prop(ARE < 0.10) Better (ARE < 0.10) Better Estimate

Implementation of Software at Ohio Department of Transportation 

We successfully installed our estimation modules (McCord, et al, 2009) on ODOT’s computer system 

and estimated AADT from an existing air photo with limited manual intervention. The photo imaged a 

portion of Licking County State Road 16. Specifically, we georegistered the scanned photo in ODOT’s 

Geographic Information System (GIS) database.  We then used a mouse to select the section of roadway 

over which vehicles would be “counted” and to digitize the location (lat-lon) of each vehicle on the 

segment.  After completing the registration and digitization, the length L, segment id, and functional 

class were automatically available from the GIS data.  The most recent AADT estimate based on a 

coverage count on the segment was obtained from GIS after inputting the date when the image was 

taken.  Presently, date and time information are contained a in a scanned photo of the flight log and 

input manually, since ODOT has no need to include this information in the image’s meta data.  If this 

AADT estimation approach is pursued in the future, it would be straightforward for a state DOT to create 

a meta data spreadsheet of images with such data included, which would allow this step to be 

automated. We manually input an average speed U of 70 mph. We had previously used ODOT Traffic 

Monitoring database information to create tables of growth factors, hourly and seasonal factors (FH and 

FMD) and of coverage count, growth factor, hourly, and daily standard deviations (σC , σG , σH, and σD). 

The appropriate values were automatically retrieved based on the functional class, date, and time 
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information associated with the image.  The “image-based”  information L and Nveh were automatically 

used to determine the sub-hourly standard deviation σT. The software then automatically produced the 

AADT estimate for the year of the image. 

In the implementation process, we needed extensive help from ODOT personnel to allow compatibility 

of our software modules with the ODOT computer system. We believe that this would be a “one-time 

issue” that would not cause problems for operational use of an image-based approach to improving 

AADT estimation if state DOTs committed to implementation of the software. We also realized that the 

system would be difficult to implement if images were not georeferenced.  Therefore, we believe that 

the image-based approach to AADT estimation might only be cost-effective if the DOT collects 

georeferenced images on a regular basis.  We believe that DOTs will be increasingly collecting 

georeferenced imagery in the future. In addition, we discovered that many of images in the ODOT 

database were actually mosaics of multiple overlapping images taken at different times. In our study, 

we chose a road segment that did not cross any overlapping image lines to ensure that the date and 

time information corresponded to when the vehicles were imaged.  If this approach is to be pursued in 

the future, it would be important to have access to the original images when using this approach. 

Different approaches could be developed and investigated to address correlation when the images are 

taken within only a few seconds of each other. 

CONCLUSIONS 

The results obtained this year build upon those produced in our first year study in supporting the 

potential of improving AADT estimates by using air photos that either exist in state DOT databases or 

can be obtained by state DOTs at low cost. The first year study empirically showed the advantage of 

incorporating an image-based estimate of AADT with an estimate produced from traditional traffic 

counts in a way that can implemented with no additional data collection.  The estimation approach 

assumed a default value of an input parameter that was derived from a previously conducted empirical 

study.  This year, we conducted an additional empirical study that produced an almost identical value of 

this input parameter, providing additional confidence in the default value. We also conducted an 

empirical study indicating that the AADT estimate might be improved by refining the default value with 

information in the image that is already extracted to produce the image-based AADT estimate. 

In the first year study, we also developed software modules to indicate the potential of implementing 

the approach for operational use.  This year, we integrated the modules and installed proof-of-concept 

software at the Ohio Department of Transportation to investigate the feasibility of efficiently producing 

an AADT estimate using an ODOT image and ODOT Traffic Monitoring data. Based on this exercise, we 

believe that an operational system that improves AADT estimates by using existing or easy-to-obtain 

images could be implemented in state DOTs across the country if the DOTs regularly collect 

georeferenced images and maintain the original imagery, and not only mosaics of sets of images. 
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APPENDIX - DERIVATION OF I 

We call Noise(img) the ratio of the image-based AADT estimate AADTimg to the true AADT value AADT: 

Noise(img) = AADTimg / AADT (A.1) 

Rearranging Equation (A.1) to write AADTimg = AADT  Noise(img), we see that Noise(img) can be 

considered a multiplicative error term in estimating AADT from a single image. 

When producing the image-based AADT estimate AADTimg, we first obtain the number of vehicles Nveh 

appearing in the imaged portion of the segment. This number can be considered to represent an 

“equivalent traffic volume” that would be observed during a very short “equivalent count interval” tdur 

dur durhours. The interval t (0< t <1) is determined by dividing the length of the segment imaged L by 

average speed of vehicles U on the segment. The short-term traffic volume Nveh is then expanded to an 

hourly volume estimate, and the estimated hourly volume is expanded to a daily volume estimate by 

using hourly factors available from ATR data. Finally, the estimated daily volume is deseasonalized to 

produce AADTimg by using the day-of-the-week and month-of-the-year factors currently used in 

traditional ground-based AADT estimation.  These factors can be derived from ATR data.  In short, the 

approach can be represented as: 

(Nveh durAADTimg = /t )  24  FH(h; d)  FMD(m,d), (A.2a) 

with, 

tdur = L/U, (A.2b) 
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where FH(h; d) is a factor used to convert an hourly traffic volume occurring during hour h and day-of-

week d on the segment to an average hourly volume for the day, FMD(m,d) is a seasonal factor used to 

convert a 24-hour traffic volume occurring on day-of-week d and month-of-year m to an estimate of the 

average volume for the year, and Nveh , tdur , L, and U were defined above.  We note that substituting 

(A.2b) in Nveh x (1/ tdur), which produces an hourly volume estimate, yields the fundamental relation of 

macroscopic flow stating that (hourly) volume or flow is equal to density (Nveh /L) times space mean 

speed U. 

Equation (A.2) shows that there are three main steps involved with converting a single image to an 

AADT estimate: 

Niveh (i) converting the “equivalent” short-term traffic count to an estimate of the hourly 

volume by dividing the equivalent count interval tdur (in units of hours) 

(ii) converting this estimated hourly volume to an estimate of the daily volume by multiplying 

by 24 and the appropriate hourly factor FMD(m,d) 

(iii) converting this estimated daily volume to an estimate of AADT by multiplying by the 

corresponding seasonal factor FMD(m,d) 

We can think of one noise component (i.e., error) imposed upon the estimate at each step. Specifically, 

consider three noise components Noise(T), Noise(H), and Noise(D), defined as: 

Noise(T) = (Nveh /tdur) / VH(h,), (A.3a) 

Noise(H) = VH(h,)  (24 FH(h,d)) / VD(), (A.3b) 

Noise(D) = VD()  FMD(m,d) / AADT, (A.3c) 

where VH(h,) is the true hourly volume in hour-of-the-day h on day-of-the-year  in which the segment 

was imaged, VD() is the true daily volume that occurred on day-of-the-year , and AADT is the true 

AADT for the year in which the segment was imaged. Similar to Noise(img) defined in Equation (A.1), all 

three noise components are the ratios of an estimated volume to the true volume.  Noise(D) is the ratio 

of the estimated AADT to the true AADT on the segment, where the estimated AADT is developed from 

the true daily volume by deseasonalizing this daily volume with seasonal factors.  In other words, 

Noise(D) represents the “random” variation in the true daily volume from the AADT after the daily 

volume is adjusted by seasonal factors. Noise(H) is the ratio of the estimated daily volume to the true 

daily volume, where the estimated daily volume is developed from the true hourly volume expanded to 

account for all 24 hours in the day and the hourly variability as represented by the hourly factor FH . 

Noise(D) and Noise(H) include both the temporal variability that would remain if segment-specific 

adjustment factors FMD and FH could be obtained and the “spatial variability” that results from the need 

to estimate a segment’s adjustment factors for segments not equipped with ATRs from data collected 

on supposedly “homogeneous” segments equipped with ATRs.  Noise(T) is the ratio of the estimated 

hourly volume to the true hourly volume, where the estimated hourly volume is developed by linearly 

expanding the “observed” tdur count Nveh . 
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With Equations (A.3a) - (A.3c), Equation (A.2) can be rewritten as AADTimg = AADT  Noise(D) Noise(H) 

 Noise(T) and Equation (A.1) as 

Noise(img) = Noise(D)  Noise(H)  Noise(T) (A.4) 

That is, Noise(img) is equal to the product of the three noise components. 

The three noise components represent the “random” traffic variations at different time scales: Noise(D) 

for daily volumes, Noise(H) for hourly volumes, and Noise(T) for tdur-minute volumes. Even though actual 

hourly volumes would be dependent on the daily volumes and the tdur interval volumes would be 

dependent on the hourly volumes, the “random” traffic variation in the three time scales would appear 

to be mutually independent, since any of them does not provide any useful information about the 

“random” variation in the other two time scales.  That is, knowing, for example, that the true daily 

volume VD on a given day is greater than what is typically found on the day-of-week and month-of-year 

for that day, given true AADT (i.e., VD()  FMD(m,d) > AADT) would not provide information on how the 

true hourly volume VH(h,) in a specified hour h relates the what would be expected in that hour, given 

the true daily volume.  That is, it does not provide information on how VH(h,) would compare to VD() 

/(24 FH(h,d)). 

Since Noise(img) is a product of three independent noise components, the mean of Noise(img) would be 

the product of the means of the three noise components. E[Noise(img)] =  E[Noise(D)]  E[Noise(H)]  
E[Noise(T)]: Given the definitions of the three Noise components, we assume that the mean of each 

equals one. (Empirical analysis using ATR data supports that E[Noise(D)] and E[Noise(H)] are both 

approximately 1, and the analysis below argues for E[Noise(T)] = 1.) Therefore, E[Noise(img)] = 

E[Noise(D)]E[Noise(H)]E[Noise(T)] = 111 = 1.  Since E[Noise(img)] = E[AADTimg / AADT] = E[AADTimg] 

/ AADT = 1, it follows that E[AADTimg] = 1. Indeed, the empirical studies conducted to date (see and 

McCord et al., (2003) and Table1 in the text) support this result. 

Since the three noise components are assumed to be independent and their means are equal to one, 

one can derive that the variance of the product of the three components is the sum of their variances 

plus all the variance cross-products That is, using imgDHandT, respectively, to denote the 

standard deviations of Noise(img), Noise(D), Noise(H), and Noise(T), 

2 2 2 2 2 2 2 2 2 2 2 2 2img = D +H +T +D H +H T +D T +D H T . (A.5) 

The values of the standard deviations can be shown to be small – on the order of 10-1 . Therefore, the 

variances will be on the order of 10-2, and the cross-product terms on the order of 10-4 and 10-6 . We 

ignore these second order terms and approximate the variance of Noise(img) as 

2 2 2 2img  D +H +T , (A.6) 

Equation (A.6) indicates that the variance of Noise(img) is approximately the sum of the variance of 

Noise(D), Noise(H) and Noise(T). Models such as the one we propose below for Noise(T) could 

conceivably be developed for Noise(D) and Noise(H). However, the large quantity of daily and hourly 
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volumes that DOTs regularly collect and store across their statewide networks with ATRs allow direct 

estimation of these noise components. Specifically, the variances of the Noise(D) and Noise(H) terms can 

be estimated by the sample variances: 

= 2 (A.7) 

and 

= 2 (A.8) 

where and are the sample means for Noise(D) and Noise(H), respectively, and n is 

the sample size. 

Recall from Equation (A.3a) that Noise(T) equals the ratio of estimated hourly volume and the true 

),(ˆ hV H = Nveh durhourly volume, where the estimated hourly volume is given by /t . Noise(T) represents 

sub-hourly variation in traffic flows. DOTs would not regularly collect and store the data allowing for 

direct empirical estimates of this noise component. Moreover, sub-hourly temporal patterns are not 

expected to be as stable as the hourly or daily patterns.  We are interested in estimating AADT from 

existing imagery collected in relatively free-flow conditions on uninterrupted freeways.  To increase the 

likelihood of good lighting for the imagery, most air photos are taken around noon, and many freeway 

segments are near free-flow conditions. Moreover, if there are no recent accidents on the freeway, 

traffic would likely be in steady-state, non-transitioning conditions. 

Under free-flow, steady-state conditions, traffic volumes would be reasonably modeled by a Poisson 

distribution. A realization Nveh of the random variable can be observed from an image, and probability p 

can be considered to be the proportion of the hour “observed” in the image, namely, tdur [hrs]/1 [hr] = 

tdur . In this way, VH (h,  is the unknown parameter of interest.  The mean and standard deviation of 

Noise(T) can then be derived from the negative binomial distribution. 

dur dur(VH(h, Niveh 
r =Nveh

 p=t ) ~ Negative Bin (r= Nveh , p=t ) (A.9) 

That is, given the observed number of vehicles Nveh from an image, the difference between unknown 

hourly volume VH(h, and observed volume Nveh follows a negative binomial (r, p) distribution, where 

using common negative binomial terminology, r = Nveh is the number of success, VH(h,  represents the 

number of “trials” to produce r successes, and p= tdur represents the “success probability”. 

We assume that the equivalent count interval tdur determined from the images is the true equivalent 

count interval. We also ignore measurement errors in determining the number of vehicles in the 

imaged portion of the segment and the length of the imaged portion of the segment. Our emphasis is on 

the errors involved with converting measured data to an AADT estimate and not on the measurement 

errors associated with either imaging or ground-based technologies.  With these assumptions, according 
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to (A.3a), and recalling the results for mean and standard deviation of a negative binomially distributed 

random variable (VH(h, Nveh in this case), the mean and standard deviation of VH(h, , can be 

derived, respectively, as 

E(VH (h, ) = = = (A.10a) 

Var(VH (h, ) = (A.10b) 

and the mean and standard deviation of Noise(T), can then be derived, respectively, as 

E[Noise(T)] = E [ ] = E [ ] = 1 (A.11a) 

Var [Noise(T)] = = var [ ] = var [ ] = var [ ] (A.11b) 

According to the delta method using second-order Taylor expansions to approximate the variance of a 

function of a random variable, 

var [ 

and Equation (A.11b) will become 

* 

Substituting from Equations (A.2b) 

] = 

= = 

(A.12) 

(A.13) 

(A.14) 
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